Computational nanoscience : applications for molecules, clusters, and solids /
Kálmán Varga and Joseph A. Driscoll.
- Cambridge ; New York : Cambridge University Press, 2011.
- xii, 431 p. : ill. ; 26 cm.
Includes bibliographical references (p. [409]-427) and index.
Machine generated contents note: Preface; Part I. 1D Problems: 1. Variational solution of the Schrödinger equation; 2. Solution of bound state problems using a grid; 3. Solution of the Schrödinger equation for scattering states; 4. Periodic potentials: band structure in 1D; 5. Solution of time-dependent problems in quantum mechanics; 6. Solution of Poisson's equation; Part II. 2D and 3D Systems: 7. 3D real space approach: from quantum dots to Bose-Einstein condensates; 8. Variational calculations in 2D: quantum dots; 9. Variational calculations in 3D: atoms and molecules; 10. Monte Carlo calculations; 11. Molecular dynamics simulations; 12. Tight binding approach to electronic structure calculations; 13. Plane wave density functional calculations; 14. Density functional calculations with atomic orbitals; 15. Real-space density functional calculations; 16. Time-dependent density functional calculations; 17. Scattering and transport in nanostructures; 18. Numerical linear algebra; Appendix: code descriptions; References; Index.